
Kadie, 13 Feb 2020

1

PySnpTools:
Reading and Manipulating Genomic Data in Python

Carl M Kadie

Microsoft Research (Retired)
Redmond, WA 98052

carlk@msn.com

Abstract
PySnpTools is a Python library of reading and manipulating genomic data in Python 3 (and Python 2). It allows users to
efficiently select and reorder individuals (rows) and SNP locations (columns). It then reads only the data selected. Originally
developed to support FaST-LMM – a genome-wide-association-study (GWAS) tool – PySnpTools now supports large-memory
and cluster-scale work.

More generally, PySnpTools was inspired by NumPy and Pandas. It can be thought of as a way to add Pandas-like indexing to
2-D NumPy arrays.

Keywords: Python, Open Source, Genomics, Scalability

Introduction
As we developed the FaST-LMM package (1; 2; 3; 4; 5; 6), we tired of
re-writing our code to support more and more file formats (e.g.,
PLINK’s Bed, Dat, Pheno, etc.) (7; 8). Moreover, we noticed ourselves
repeatedly performing similar manipulations, for example,

• reading data for just a subset of SNPs (columns),
• reordering the individuals (rows) in our phenotype data to

match their order in the SNP data, and
• filling in missing data and normalizing data.

Inspired by NumPy and Pandas, we created PySnpTools, an open-
source library that makes these operations easy.

We presented the first public version of PySnpTools at the PyData 2015
conference in Seattle. At the conference, Travis Oliphant (primary
creator of NumPy) recommended PySnpTools’ approach to reading and
manipulating genomic data (9). Not long after the conference, Hilary
Finucane (leader of the Finucane Lab at the Broad Institute of MIT and
Harvard) wrote us: “I've been loving PySnpTools and recommending it
to other statistical geneticists who work in Python (10)!”

Since the conference, as FaST-LMM grew to support datasets of up to 1
million samples (6), we expanded PySnpTools to also simplify:

• larger-than-memory datasets
• running loops on multiple processors or on any clusters, and
• reading and writing files locally or from/to any remote

storage.
Most recently, we’ve added support for Python 3, a much-requested
feature.

This paper tells how to install PySnpTools and describes the genomic
data that PySnpTools focuses on. It then gives examples of core usage.
It closes by listing other PySnpTools features and providing a brief
comparison to other dataset approaches.

Installing PySnpTools

To use PySnpTools:

pip install pysnptools1

Find Jupyter notebooks, full API documentation with examples, and
source code at https://github.com/fastlmm/PySnpTools.

Genomic Data

The genomic data of interest to us typically consists of 500,000 to 1.5
million columns -- one column for each SNP (that is a genome location
where humans are known to differ). The data includes of one row per
individual. One thousand to 1,000,000 rows are typical. Values within
the initial data might be 0,1,2 or missing (representing the number of
minor alleles measured for an individual at a genome location). After
standardization, values are 64-bit or 32-bit floats, with missing values
represented by NaN (“not-a-number”).

Figure 1 shows PySnpTools’ in-memory representation of genomic
data. Two strings, called the iid, identify each individual. One string,
called the sid, identifies each SNP. A float, called val, tells an
individual’s allele count at a SNP. Finally, a triple of floats, called pos,
tells the position of each SNP (chromosome number, genetic distance,
and base-pair position). For a given position in val, PySnpTools makes
it easy to find the corresponding iid, sid, and pos. Moreover, for
any iids or sids of interest, PySnpTools makes it easy and efficient to
find the corresponding positions in val.

For phenotypic and covariate data (e.g., age, sex, height, weight,
presence of a disease), PySnpTools uses the same representation. For
such data, sid tells the name of the feature (e.g., “height”) while pos is

1 Assuming pip version 10+ or Anaconda.

https://github.com/fastlmm/PySnpTools
https://fastlmm.github.io/PySnpTools/#pysnptools.snpreader.SnpReader.iid

Kadie, 13 Feb 2020

2

ignored. The val array, as a float, can also represent binary data via 0.0

and 1.0. We handle categorical data via hot-one encoding.

Reading Genomic Files: An Example

A Python object that reads genomic data from a file is called a
SnpReader. Here is how to create a SnpReader for the popular Bed file
format: We tell it what file to read and how to read it. (This SnpReader,
as yet, reads nothing from its file.)

Input:
from pysnptools.snpreader import Bed
snpreader = Bed("all.bed", count_A1=True)
print(snpreader)

Output:
Bed('all.bed',count_A1=True)

We can ask a SnpReader for the number of individuals and the number
of SNPs. We can also, for example, ask it for the iid of the first
individual. We can additionally ask it for the sid of the last SNP. (The
Bed SnpReader reads only the small files needed to answer these
questions.)

Input:
print(snpreader.iid_count,snpreader.sid_count)
print(snpreader.iid[0])
print(snpreader.sid[-1])

Output:
500 5000
['cid0P0' 'cid0P0']
snp124_m0_.23m1_.08

Next, we can read all the genomic data into memory, creating a new
SnpReader called a SnpData. Because a SnpData is a SnpReader, we
can again ask for the number of individuals and SNPs.

Input:
snpdata = snpreader.read()
print(snpdata)
print(snpdata.iid_count, snpdata.sid_count)

Output:
SnpData(Bed('all.bed',count_A1=True))
500 5000

A SnpData is a SnpReader that contains a val property that other
SnpReaders do not. The val property is an (in-memory) NumPy array
of the genomic data.

We can, for example, show the genomic data for the first 7 individuals
and first 7 SNPs. We can also find the mean of all the genomic data.

Input:
import numpy as np
print(snpdata.val[:7,:7])
print(np.mean(snpdata.val))

Output:
 [[0. 0. 1. 2. 0. 1. 2.]
 [0. 0. 1. 1. 0. 0. 2.]
 [0. 0. 1. 2. 1. 0. 0.]
 [0. 0. 0. 2. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 2.]
 [0. 0. 1. 0. 0. 0. 2.]
 [0. 0. 2. 1. 0. 1. 2.]]
0.521412

Alternatively, we can do everything in one line.

Input:
print(np.mean(Bed("all.bed",count_A1=True).read().val))

Output:
0.521412

SnpData

SnpData, the special in-memory SnpReader, is created by any
SnpReader's read() method. We can also create a SnpData from
scratch.

Here we create snpdata1 for three individuals and two SNPs. We use
NaN to mark a missing value and then ask for the mean value (ignoring
the missing value).

Input:
from pysnptools.snpreader import SnpData
snpdata1 = SnpData(iid=[['f1','c1'],['f1','c2'],
 ['f2','c1']],
 sid=['snp1','snp2'],
 val=[[0,1],[2,.5],[.5,np.nan]])
print(np.nanmean(snpdata1.val))

Output:
0.8

Selecting and Reordering Data Before Reading

Suppose we only care about the genomic data for the first 7 individuals
and first 7 SNPs. PySnpTools makes it easy to read just the desired data
from disk. We use NumPy-like indexing before the read method.

Input:
snpreader = Bed("all.bed",count_A1=True)
snpdata77 = snpreader[:7,:7].read()
print(snpdata77.val)

Fig. 1 PySnpTools’ in-memory presentation of genomic data

Kadie, 13 Feb 2020

3

Output:
[[0. 0. 1. 2. 0. 1. 2.]
 [0. 0. 1. 1. 0. 0. 2.]
 [0. 0. 1. 2. 1. 0. 0.]
 [0. 0. 0. 2. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 2.]
 [0. 0. 1. 0. 0. 0. 2.]
 [0. 0. 2. 1. 0. 1. 2.]]

All NumPy-like fancy indexing is supported: slicing, Booleans, lists of
integers, negative integers (11). Additionally, PySnpTools allows fancy
indexing on both rows and columns at once.

Appending indexing to any SnpReader, creates a new SnpReader. Here
is an extreme example. It says, “create a reader

• from file "all.bed" in Bed format
• with the individuals in reverse order and for every 2nd SNP
• for the first 5 such individuals and first 5 such SNPs
• for the first and last individuals and the first, 2nd, and 5th

SNP,
• then read.”

As before, only the final, desired data is read from the disk.

Input:
print(Bed("all.bed",count_A1=True)[::-1,::2][:5,:5]
 [[0,-1],[True,True,False,False,True]]
 .read().val)

Output:
[[0. 0. 1.]
 [0. 1. 1.]]

Indexing by Individual (Row) and SNP (Column) Identifiers

We've seen how to manipulate SnpReaders with position-based
indexing. What if we instead wish to manipulate SnpReaders by iid
(the individuals’ identifier) or sid (the SNPs’ identifier)? This is a
more Pandas-like scenario. In that case, we can use the
iid_to_index() or sid_to_index() methods.

This example shows how to read three SNPs of interest, each identified
by sid rather than position.

Input:
desired_sid_list = ['snp1750_m0_.02m1_.04',
 'snp0_m0_.37m1_.24','snp122_m0_.26m1_.34']
snpreader = Bed("all.bed",count_A1=True)
desired_snpreader = \
 snpreader[:,snpreader.sid_to_index(desired_sid_list)]
print(desired_snpreader.iid_count,
 desired_snpreader.sid_count)

Output:
500 3

Readers and Pseudo-Readers

PySnpTools includes SnpReaders for these common file formats: Bed,
Pheno, Dat, Ped, Dense. It also defines these new binary formats:
SnpNpz, SnpHdf5, and SnpMemMap. The last is of interest because it
uses NumPy’s memory-mapped arrays to offer in-memory-like access
to data larger than will fit in memory. PySnpTools also defines a format
called DistributedBed that offers random access to data stored
compactly across dozens (or hundreds or thousands) of Bed files.

In addition, PySnpTools includes SnpGen, which could be called a
“pseudo-reader”. To any program using SnpGen, it looks like a file
reader, but instead of reading data from the disk, it generates random
genomic data on the fly. This generation, based on a user-provided seed,
is deterministic.

Beyond reading SNPS, PySnpTools includes a set of readers and
pseudo-readers for kernel data. (Kernel data represents the pair-wise
similarity between individuals.)

If PySnpTools doesn’t support a data format of interest, you have two
options. If your data is relatively small, you can just read it with other
Python tools and then create an in-memory SnpData (or SnpMemMap)
object. If more performance is required, you can write a new SnpReader
module for the format. In either case, any programs written to expect a
SnpReader will automatically work with the new data format.

Beyond Genomic Data

PySnpTools includes PstReader, a generalized class that adds indexing-
by-row-or-column-identifier to any 2-D numeric data. It also adds row
and column properties. Unlike SnpReader, it does not require rows to be
individuals or columns to be SNPs.

Beyond Reading

Recently, as we worked to scale FaST-LMM to 1 million samples, we
added more functionality to PySnpTools. PySnpTools now includes
tools for:

• standardizing SNP data and kernels,
• intersecting (and ordering) the individuals from any number

of SnpReaders (in one line),
• efficiently working with ranges of large integers,
• writing loops so they can run on multiple processor or on any

cluster (defined by a module), and
• reading and writing files to any local or any distributed file

system (defined by a module).

Comparing to Other Dataset Formats

At PyData 2015, Joshua Bloom compared dataset tools for Data Science
(12). Table 1 updates his table with PySnpTools. Fundamentally,
PySnpTools decorates 2-D NumPy arrays with immutable, indexed row
and column identifiers. This gives us convenience and high efficiency
but is more special purpose than other approaches. PySnpTools also
delays all copying (and reading) until the read() method is explicitly
called, which gives us efficiency and predictability.

Summary

We have developed PySnpTools, a Python library for reading and
manipulating genomic data. Inspired by NumPy and Pandas,
PySnpTools can be thought of as a way to add Pandas-like indexing to
2-D NumPy arrays. To install PySnpTools:

pip install pysnptools

Jupyter notebooks, full API documentation with examples, and source
code are available at https://github.com/fastlmm/PySnpTools.

https://github.com/fastlmm/PySnpTools

Kadie, 13 Feb 2020

4

Acknowledgments

Thanks to everyone on the FaST-LMM team, whose use and feedback
informed the PySnpTools design. A special thanks to Christoph Lippert,
who wrote our original Bed reader, and David Heckerman, who
encouraged PySnpTools’ development.

References
1. FaST linear mixed models for genome-wide association studies.
Lippert, C., et al. 2011, Nature Methods, 8 833-835.
2. An Exhaustive Epistatic SNP Association Analysis on Expanded
Wellcome Trust Data. Lippert, C., et al. 2013, Scientific Reports 3,
1099.
3. Greater power and computational efficiency for kernel-based
association testing of sets of genetic variants. Lippert, C, et al. 2014,
Bioinformatics 30,22.
4. Further Improvements to Linear Mixed Models for Genome-Wide
Association Studies. Widmer, C., et al. 2015, Scientific Reports, 4
6874.
5. Linear mixed model for heritability estimation. Heckerman, D. et al.
2016, Proceedings of the National Academy of Sciences 113 (27) .
6. Ludicrous Speed Linear Mixed Models for Genome-Wide Association
Studies. Kadie, C. & Heckerma, D. 2019, bioRxiv 154682.
7. Purcell, S. PLINK. [Online] http://zzz.bwh.harvard.edu/plink/.
8. PLINK: a toolset for whole-genome association and population-
based. Purcell, S. et al. 2007, American Journal of Human Genetics,
81.
9. Oliphant, T. Personal Communications. 2015.
10. Finuncane, H. Personal Communications. 2015.
11. Indexing. NumPy User Guide. [Online]
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html.
12. A Systems View of Machine Learning. Bloom, J. Seattle : s.n.,
2015. PyData.

 Slicing
Induces Copy

Immutable
Columns

Query Transfer
Speed To
Python

C++
SDK

Distributed Memory
Efficiency

Categorical
Optimized

Sparse &
Dense

PySnpTools No Yes
(and Row)

Yes NumPy NumPy No NumPy No Dense
Only

Pandas
DataFrame

Sequences No Yes N/A No No Medium Medium Yes

GraphLab
SFrame

Yes Yes Yes Low Yes Yes High No Yes

Spark
DataFrame

Yes Yes Yes Very Low No Yes Low No Yes

Dask Yes No Yes N/A No Yes Medium No No
Blaze No No Yes N/A No Yes Medium No No
Wise DataSet Copy-on-

write
No Yes Very High Yes Yes Very High High Yes

Table 1. Bloom’s Dataset for Data Science, plus PySnpTools

	PySnpTools: Reading and Manipulating Genomic Data in Python
	Abstract
	Introduction
	Installing PySnpTools
	Genomic Data
	Reading Genomic Files: An Example
	SnpData
	Selecting and Reordering Data Before Reading
	Indexing by Individual (Row) and SNP (Column) Identifiers
	Readers and Pseudo-Readers
	Beyond Genomic Data
	Beyond Reading
	Comparing to Other Dataset Formats
	Summary
	Acknowledgments
	References

