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Abstract 
PySnpTools is a Python library of reading and manipulating genomic data in Python 3 (and Python 2). It allows users to 
efficiently select and reorder individuals (rows) and SNP locations (columns). It then reads only the data selected. Originally 
developed to support FaST-LMM – a genome-wide-association-study (GWAS) tool – PySnpTools now supports large-memory 
and cluster-scale work. 
 
More generally, PySnpTools was inspired by NumPy and Pandas. It can be thought of as a way to add Pandas-like indexing to 
2-D NumPy arrays. 
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Introduction 
As we developed the FaST-LMM package (1; 2; 3; 4; 5; 6), we tired of 
re-writing our code to support more and more file formats (e.g., 
PLINK’s Bed, Dat, Pheno, etc.) (7; 8). Moreover, we noticed ourselves 
repeatedly performing similar manipulations, for example, 

• reading data for just a subset of SNPs (columns), 
• reordering the individuals (rows) in our phenotype data to 

match their order in the SNP data, and  
• filling in missing data and normalizing data. 

Inspired by NumPy and Pandas, we created PySnpTools, an open-
source library that makes these operations easy. 
 
We presented the first public version of PySnpTools at the PyData 2015 
conference in Seattle. At the conference, Travis Oliphant (primary 
creator of NumPy) recommended PySnpTools’ approach to reading and 
manipulating genomic data (9). Not long after the conference, Hilary 
Finucane (leader of the Finucane Lab at the Broad Institute of MIT and 
Harvard) wrote us: “I've been loving PySnpTools and recommending it 
to other statistical geneticists who work in Python (10)!” 
 
Since the conference, as FaST-LMM grew to support datasets of up to 1 
million samples  (6), we expanded PySnpTools to also simplify: 

• larger-than-memory datasets 
• running loops on multiple processors or on any clusters, and 
• reading and writing files locally or from/to any remote 

storage. 
Most recently, we’ve added support for Python 3, a much-requested 
feature. 
 
This paper tells how to install PySnpTools and describes the genomic 
data that PySnpTools focuses on. It then gives examples of core usage. 
It closes by listing other PySnpTools features and providing a brief 
comparison to other dataset approaches. 

Installing PySnpTools 

To use PySnpTools: 
 

pip install pysnptools1 
 
Find Jupyter notebooks, full API documentation with examples, and 
source code at https://github.com/fastlmm/PySnpTools. 

Genomic Data 

The genomic data of interest to us typically consists of 500,000 to 1.5 
million columns -- one column for each SNP (that is a genome location 
where humans are known to differ). The data includes of one row per 
individual. One thousand to 1,000,000 rows are typical. Values within 
the initial data might be 0,1,2 or missing (representing the number of 
minor alleles measured for an individual at a genome location). After 
standardization, values are 64-bit or 32-bit floats, with missing values 
represented by NaN (“not-a-number”). 
 
Figure 1 shows PySnpTools’ in-memory representation of genomic 
data. Two strings, called the iid, identify each individual. One string, 
called the sid, identifies each SNP. A float, called val, tells an 
individual’s allele count at a SNP. Finally, a triple of floats, called pos, 
tells the position of each SNP (chromosome number, genetic distance, 
and base-pair position). For a given position in val, PySnpTools makes 
it easy to find the corresponding iid, sid, and pos. Moreover, for 
any iids or sids of interest, PySnpTools makes it easy and efficient to 
find the corresponding positions in val. 
 
For phenotypic and covariate data (e.g., age, sex, height, weight, 
presence of a disease), PySnpTools uses the same representation. For 
such data, sid tells the name of the feature (e.g., “height”) while pos is 

 
1 Assuming pip version 10+ or Anaconda. 

https://github.com/fastlmm/PySnpTools
https://fastlmm.github.io/PySnpTools/#pysnptools.snpreader.SnpReader.iid
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ignored. The val array, as a float, can also represent binary data via 0.0 

and 1.0. We handle categorical data via hot-one encoding. 

Reading Genomic Files: An Example 

A Python object that reads genomic data from a file is called a 
SnpReader. Here is how to create a SnpReader for the popular Bed file 
format: We tell it what file to read and how to read it. (This SnpReader, 
as yet, reads nothing from its file.) 
 
Input: 
from pysnptools.snpreader import Bed 
snpreader = Bed("all.bed", count_A1=True) 
print(snpreader) 

 
Output: 
Bed('all.bed',count_A1=True) 
 
We can ask a SnpReader for the number of individuals and the number 
of SNPs. We can also, for example, ask it for the iid of the first 
individual. We can additionally ask it for the sid of the last SNP. (The 
Bed SnpReader reads only the small files needed to answer these 
questions.) 
 
Input: 
print(snpreader.iid_count,snpreader.sid_count) 
print(snpreader.iid[0]) 
print(snpreader.sid[-1]) 

 
Output: 
500 5000 
['cid0P0' 'cid0P0'] 
snp124_m0_.23m1_.08 
 
Next, we can read all the genomic data into memory, creating a new 
SnpReader called a SnpData. Because a SnpData is a SnpReader, we 
can again ask for the number of individuals and SNPs. 
 
Input: 
snpdata = snpreader.read() 
print(snpdata) 
print(snpdata.iid_count, snpdata.sid_count) 
 

Output: 
SnpData(Bed('all.bed',count_A1=True)) 
500 5000 
 
A SnpData is a SnpReader that contains a val property that other 
SnpReaders do not. The val property is an (in-memory) NumPy array 
of the genomic data. 
 
We can, for example, show the genomic data for the first 7 individuals 
and first 7 SNPs. We can also find the mean of all the genomic data. 
 
Input: 
import numpy as np 
print(snpdata.val[:7,:7]) 
print(np.mean(snpdata.val)) 
 
Output: 
 [[0. 0. 1. 2. 0. 1. 2.] 
 [0. 0. 1. 1. 0. 0. 2.] 
 [0. 0. 1. 2. 1. 0. 0.] 
 [0. 0. 0. 2. 0. 0. 0.] 
 [0. 0. 0. 0. 0. 0. 2.] 
 [0. 0. 1. 0. 0. 0. 2.] 
 [0. 0. 2. 1. 0. 1. 2.]] 
0.521412 
 
Alternatively, we can do everything in one line. 
 
Input: 
print(np.mean(Bed("all.bed",count_A1=True).read().val)) 

 
Output: 
0.521412 

SnpData 

SnpData, the special in-memory SnpReader, is created by any 
SnpReader's read() method. We can also create a SnpData from 
scratch. 
 
Here we create snpdata1 for three individuals and two SNPs. We use 
NaN to mark a missing value and then ask for the mean value (ignoring 
the missing value). 
 
Input: 
from pysnptools.snpreader import SnpData 
snpdata1 = SnpData(iid=[['f1','c1'],['f1','c2'], 
                        ['f2','c1']], 
                   sid=['snp1','snp2'], 
                   val=[[0,1],[2,.5],[.5,np.nan]]) 
print(np.nanmean(snpdata1.val)) 
 
Output: 
0.8 

Selecting and Reordering Data Before Reading 

Suppose we only care about the genomic data for the first 7 individuals 
and first 7 SNPs. PySnpTools makes it easy to read just the desired data 
from disk. We use NumPy-like indexing before the read method. 
 
Input: 
snpreader = Bed("all.bed",count_A1=True) 
snpdata77 = snpreader[:7,:7].read() 
print(snpdata77.val) 

 

Fig. 1 PySnpTools’ in-memory presentation of genomic data 
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Output: 
[[0. 0. 1. 2. 0. 1. 2.] 
 [0. 0. 1. 1. 0. 0. 2.] 
 [0. 0. 1. 2. 1. 0. 0.] 
 [0. 0. 0. 2. 0. 0. 0.] 
 [0. 0. 0. 0. 0. 0. 2.] 
 [0. 0. 1. 0. 0. 0. 2.] 
 [0. 0. 2. 1. 0. 1. 2.]] 
 
All NumPy-like fancy indexing is supported: slicing, Booleans, lists of 
integers, negative integers (11). Additionally, PySnpTools allows fancy 
indexing on both rows and columns at once. 
 
Appending indexing to any SnpReader, creates a new SnpReader. Here 
is an extreme example. It says, “create a reader 

• from file "all.bed" in Bed format 
• with the individuals in reverse order and for every 2nd SNP 
• for the first 5 such individuals and first 5 such SNPs 
• for the first and last individuals and the first, 2nd, and 5th 

SNP, 
• then read.” 

As before, only the final, desired data is read from the disk. 
 
Input: 
print(Bed("all.bed",count_A1=True)[::-1,::2][:5,:5] 
       [[0,-1],[True,True,False,False,True]] 
       .read().val) 
 
Output: 
[[0. 0. 1.] 
 [0. 1. 1.]] 
 

Indexing by Individual (Row) and SNP (Column) Identifiers  

We've seen how to manipulate SnpReaders with position-based 
indexing. What if we instead wish to manipulate SnpReaders by iid 
(the individuals’ identifier) or sid (the SNPs’ identifier)? This is a 
more Pandas-like scenario. In that case, we can use the 
iid_to_index() or sid_to_index() methods. 
 
This example shows how to read three SNPs of interest, each identified 
by sid rather than position. 
 
Input: 
desired_sid_list = ['snp1750_m0_.02m1_.04', 
             'snp0_m0_.37m1_.24','snp122_m0_.26m1_.34'] 
snpreader = Bed("all.bed",count_A1=True) 
desired_snpreader = \ 
    snpreader[:,snpreader.sid_to_index(desired_sid_list)] 
print(desired_snpreader.iid_count, 
      desired_snpreader.sid_count) 

 
Output: 
500 3 
 

Readers and Pseudo-Readers 

PySnpTools includes SnpReaders for these common file formats: Bed, 
Pheno, Dat, Ped, Dense. It also defines these new binary formats: 
SnpNpz, SnpHdf5, and SnpMemMap. The last is of interest because it 
uses NumPy’s memory-mapped arrays to offer in-memory-like access 
to data larger than will fit in memory. PySnpTools also defines a format 
called DistributedBed that offers random access to data stored 
compactly across dozens (or hundreds or thousands) of Bed files. 

 
In addition, PySnpTools includes SnpGen, which could be called a 
“pseudo-reader”. To any program using SnpGen, it looks like a file 
reader, but instead of reading data from the disk, it generates random 
genomic data on the fly. This generation, based on a user-provided seed, 
is deterministic.  
 
Beyond reading SNPS, PySnpTools includes a set of readers and 
pseudo-readers for kernel data. (Kernel data represents the pair-wise 
similarity between individuals.) 
 
If PySnpTools doesn’t support a data format of interest, you have two 
options. If your data is relatively small, you can just read it with other 
Python tools and then create an in-memory SnpData (or SnpMemMap) 
object. If more performance is required, you can write a new SnpReader 
module for the format. In either case, any programs written to expect a 
SnpReader will automatically work with the new data format. 

Beyond Genomic Data 

PySnpTools includes PstReader, a generalized class that adds indexing-
by-row-or-column-identifier to any 2-D numeric data. It also adds row 
and column properties. Unlike SnpReader, it does not require rows to be 
individuals or columns to be SNPs. 

Beyond Reading 

Recently, as we worked to scale FaST-LMM to 1 million samples, we 
added more functionality to PySnpTools. PySnpTools now includes 
tools for: 

• standardizing SNP data and kernels, 
• intersecting (and ordering) the individuals from any number 

of SnpReaders (in one line), 
• efficiently working with ranges of large integers, 
• writing loops so they can run on multiple processor or on any 

cluster (defined by a module), and 
• reading and writing files to any local or any distributed file 

system (defined by a module). 
 

Comparing to Other Dataset Formats 

At PyData 2015, Joshua Bloom compared dataset tools for Data Science 
(12). Table 1 updates his table with PySnpTools. Fundamentally, 
PySnpTools decorates 2-D NumPy arrays with immutable, indexed row 
and column identifiers. This gives us convenience and high efficiency 
but is more special purpose than other approaches. PySnpTools also 
delays all copying (and reading) until the read() method is explicitly 
called, which gives us efficiency and predictability. 

Summary 

We have developed PySnpTools, a Python library for reading and 
manipulating genomic data. Inspired by NumPy and Pandas, 
PySnpTools can be thought of as a way to add Pandas-like indexing to 
2-D NumPy arrays. To install PySnpTools: 
 

pip install pysnptools 
 
Jupyter notebooks, full API documentation with examples, and source 
code are available at https://github.com/fastlmm/PySnpTools. 

https://github.com/fastlmm/PySnpTools
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 Slicing 
Induces Copy 

Immutable 
Columns 

Query Transfer 
Speed To 
Python 

C++ 
SDK 

Distributed Memory 
Efficiency 

Categorical 
Optimized 

Sparse & 
Dense 

PySnpTools No Yes  
(and Row) 

Yes NumPy NumPy No NumPy No Dense 
Only 

Pandas 
DataFrame 

Sequences No Yes N/A No No Medium Medium Yes 

GraphLab 
SFrame 

Yes Yes Yes Low Yes Yes High No Yes 

Spark 
DataFrame 

Yes Yes Yes Very Low No Yes Low No Yes 

Dask Yes No Yes N/A No Yes Medium No No 
Blaze No No Yes N/A No Yes Medium No No 
Wise DataSet Copy-on-

write 
No Yes Very High Yes Yes Very High High Yes 

Table 1. Bloom’s Dataset for Data Science, plus PySnpTools 
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